🧩Почему важно устранять первопричину искажения десятичных данных, а не ограничиваться их очисткой
В задачах машинного обучения и аналитики недостаточно просто очищать обучающие или производственные данные от некорректных значений. Особенно это касается десятичных чисел, поскольку их искажение может происходить незаметно, но приводить к существенному снижению качества моделей и принятию ошибочных бизнес-решений.
📉Типовой сценарий: Обнаруживается, что значения теряют дробную часть — например, «12,5» становится «125». После этого данные очищаются, модель переобучается, однако через некоторое время проблема возникает снова.
🎯Рекомендованный подход — поиск и устранение первоисточника:
— Проверить, каким образом данные изначально собираются (веб-формы, скрипты импорта и пр.). — Проанализировать промежуточные этапы обработки: возможно, ошибка возникает при парсинге CSV-файлов, при приведении типов или из-за некорректного округления. — Ознакомиться с системными журналами и логами: не исключено, что ошибка началась после обновления компонентов, изменения конфигурации или внедрения новых версий ПО.
🛠После выявления причины необходимо внести корректировки на уровне источника данных: — Обеспечить сохранение числовой точности. — Внедрить строгие проверки форматов и типов. — Настроить автоматические уведомления о появлении подозрительных или выходящих за допустимые границы значений.
⚠️ Важно учитывать, что подобные ошибки могут проявляться непостоянно, а лишь в отдельных случаях. Именно поэтому требуется постоянный мониторинг распределения значений и логов.
🧩Почему важно устранять первопричину искажения десятичных данных, а не ограничиваться их очисткой
В задачах машинного обучения и аналитики недостаточно просто очищать обучающие или производственные данные от некорректных значений. Особенно это касается десятичных чисел, поскольку их искажение может происходить незаметно, но приводить к существенному снижению качества моделей и принятию ошибочных бизнес-решений.
📉Типовой сценарий: Обнаруживается, что значения теряют дробную часть — например, «12,5» становится «125». После этого данные очищаются, модель переобучается, однако через некоторое время проблема возникает снова.
🎯Рекомендованный подход — поиск и устранение первоисточника:
— Проверить, каким образом данные изначально собираются (веб-формы, скрипты импорта и пр.). — Проанализировать промежуточные этапы обработки: возможно, ошибка возникает при парсинге CSV-файлов, при приведении типов или из-за некорректного округления. — Ознакомиться с системными журналами и логами: не исключено, что ошибка началась после обновления компонентов, изменения конфигурации или внедрения новых версий ПО.
🛠После выявления причины необходимо внести корректировки на уровне источника данных: — Обеспечить сохранение числовой точности. — Внедрить строгие проверки форматов и типов. — Настроить автоматические уведомления о появлении подозрительных или выходящих за допустимые границы значений.
⚠️ Важно учитывать, что подобные ошибки могут проявляться непостоянно, а лишь в отдельных случаях. Именно поэтому требуется постоянный мониторинг распределения значений и логов.
Among the actives, Ascendas REIT sank 0.64 percent, while CapitaLand Integrated Commercial Trust plummeted 1.42 percent, City Developments plunged 1.12 percent, Dairy Farm International tumbled 0.86 percent, DBS Group skidded 0.68 percent, Genting Singapore retreated 0.67 percent, Hongkong Land climbed 1.30 percent, Mapletree Commercial Trust lost 0.47 percent, Mapletree Logistics Trust tanked 0.95 percent, Oversea-Chinese Banking Corporation dropped 0.61 percent, SATS rose 0.24 percent, SembCorp Industries shed 0.54 percent, Singapore Airlines surrendered 0.79 percent, Singapore Exchange slid 0.30 percent, Singapore Press Holdings declined 1.03 percent, Singapore Technologies Engineering dipped 0.26 percent, SingTel advanced 0.81 percent, United Overseas Bank fell 0.39 percent, Wilmar International eased 0.24 percent, Yangzijiang Shipbuilding jumped 1.42 percent and Keppel Corp, Thai Beverage, CapitaLand and Comfort DelGro were unchanged.
Telegram Auto-Delete Messages in Any Chat
Some messages aren’t supposed to last forever. There are some Telegram groups and conversations where it’s best if messages are automatically deleted in a day or a week. Here’s how to auto-delete messages in any Telegram chat. You can enable the auto-delete feature on a per-chat basis. It works for both one-on-one conversations and group chats. Previously, you needed to use the Secret Chat feature to automatically delete messages after a set time. At the time of writing, you can choose to automatically delete messages after a day or a week. Telegram starts the timer once they are sent, not after they are read. This won’t affect the messages that were sent before enabling the feature.
Библиотека собеса по Data Science | вопросы с собеседований from ms